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Abstract. Numerical methods for obtaining lattice Green functions are presented. The 
whole array to arbitrary distance on an infinite lattice can be generated in approximately 
50 ps CPU (VAX) per site. The accuracy is close to machine error. For small mass, the 
coefficients of the power series expansion can be generated similarly. Results are given in 
two and three dimensions. 

1. Introduction 

Many problems involve the free field propagator 

which on a lattice is modified to 

1 
f ( k ) = x w  ( 2 - 2 c o s k w ) + M 2 ’  

These problems include perturbative calculations of effects of weak disorder [I17 or 
of Wilson loops in lattice theories [2]. (There may also be numerators depending on 
k, but the main difficulties come from the denominators.) 

Typically an n-loop calculation in D dimensions requires a numerical integration 
over nD momentum variables. In many cases, the computing time can be cut drastically 
by converting the integrals to sums in position space. For instance, a number of 
two-loop integrals can be reduced to sums over a single position in D space. Moreover, 
a sum is free of the interpolation error inherent in evaluating an integral. Since in 
principle one is dealing with an infinite lattice, there is a truncation error as the sum 
must be cut off somewhere, but the error can be clearly estimated. 

It is further possible to reduce the truncation error by calculating the difference 
between the lattice diagram and some known continuum quantity; this difference 
converges faster with the cutoff. We shall discuss such devices in a forthcoming paper. 

$Work supported in part by DOE. 
11 Work supported in part by NSF. 
11 Note equations (1.6.4) and (1.6.10). We write M’ for R;-w’, and take D,, to be ~ , ( 2 - 2 c o s  k , ) ,  

0305-4470/87/155095 + 17$02.50 @ 1987 IOP Publishing Itd 5095 



5096 R Friedberg and 0 Martin 

Here, we address ourselves to the problem of determining the lattice Green functions 
( LGF) or position-space propagators defined by 

where f ( k )  is given by (1.2). 
Clearly, if (1.3) must be done as a D-dimensional numerical integral at each lattice 

site, all advantage of the position method is lost. To date, the best evaluations of (1.3) 
have been done either ( a )  by fast Fourier transform in a finite volume [3] or ( b )  by 
reducing (1.3) to a one-dimensional integral of a product of Bessel functions [2] (see 

In method ( a ) ,  the work required grows logarithmically faster than the volume, 
and more importantly, the answer contains artefacts due to periodicity. Also the 
Fourier transforms d o  not give accurate results when the LGF is very small, e.g., close 
to machine accuracy. 

Method ( b )  deals directly with the infinite volume case (though it can be adapted 
to finite volume) and is very accurate. However, it is much slower, requiring a numerical 
integral at each lattice site. It is ideally suited for problems in which one needs the 
LGF only at a few points, since the work is limited to those points. 

We present here a method which, like the fast Fourier transform, generates a whole 
array of LGF, but in an  efficient way. It is even faster than the FFT, as the work per 
site remains fixed no matter how large the array. Like the Bessel function method, it 
is absolutely free of finite-volume effects and  can be extended in principle arbitrarily 
far from the origin. Even at large distances the relative error is not much more than 
machine rounding ( 

The heart of our method is that, in addition to the Laplace difference equation, 
the LGF exactly satisfy an  auxiliary set of first-order difference equations. By means 
of them, the LGF can be found quickly all over D space if they are known on a 
one-dimensional tube of cross section 2'"-". Moreover, the auxiliary equations can 
be combined with the Laplace equation to yield a self-contained set of difference 
equations determining the LGF on the tube. In § 2, we derive the auxiliary equations 
and show how to extend the tube solution to D space. This procedure requires about 
50 ps CPU per site on a VAX. 

The solution of the tube problem is more complicated than the extension to D 
space, but for large arrays the computing time is small by comparison since the number 
of sites involved is only linear in the radius of the array to be computed. In 9 9  3 and 
4 we describe a sifting procedure for obtaining extremely accurate solutions. For M # 0 
these methods require a radius much larger than M - I ,  so that at  very small M it seems 
worthwhile to express the LGF as a power series in M at each site. In § 5, we show 
how this can be done using the M = 0 values as a starting point. Section 6 gives our 
conclusions. 

§ 5.4). 

in double precision). 

2. Reduction to one dimension 

2.1. The gradient equations 

As is well known, the LGF defined by (1.3) satisfy the difference equation 

1 [T(x + p ) + *( x - p ) 3  - ( 2 0  + MZ)T( x) = - sxo 
P 
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which is the lattice analogue of Laplace's equation with unit source 

v2qc- M * q c =  -S(x)  (2.2) 

in the continuum, where qc is the Fourier transform of (1.1). 
Now, the continuum Green function qc, being isotropic, also satisfies 

a 
V T C  = ?-Tc 

a r  

which yields (by factoring out (1/ r ) a q c / J r )  a set of D - 1 linear homogeneous equations 

in the derivatives of qC. 

any fixed p, 
Likewise, Y, although not isotropic, satisfies an equation like (2.3). We have, for 

1 2i sin k, exp ( iXk jx , . )  
Y ( x +  p )  - T ( x  - p )  =y 

(277) 

d cos k 
X 

C,(2-2 COS k , , ) + M 2  

= x,@(x) (2.5) 

by integration by parts over k,, where 

@(x)  = 4 (277) 1 n 1' dk,. exp( i 1 ks,.) ln( 1 ,I (2 -2  cos k,)  + M ' )  (2.6) 

is the same for all p. Hence 

. . .  - u' (x+p, )  - * (x  -PI) - - Q ( x + p z )  -T(x-p*)  - 
X I  

We shall call these D - 1 equations the gradient equations. 

(2.7) 

2.2. Error-prone extension from a cube 

By combining (2.7) with (2.1), we obtain D linear equations at each site. Thus the 
LGF appear to be overdetermined since there are D times as many equations as 
unknowns; but of course the equations at neighbouring sites contain the required 
number of redundancies. Nevertheless the system of (2.7) with (2.1) is stronger than 
(2.1) alone in that fewer boundary conditions are needed. 

In fact, if the LGF are given on a 2-cube (2" adjacent sites forming a cube), they 
can be determined from (2.7) and (2.1) on the whole space. To see this, consider a 
corner of the 2-cube. This site has 2 0  neighbours of which D are in the cube. Therefore 
the D equations (2.7) and (2.1) contain just D unknowns (the neighbours not in the 
cube) and can be solved. Thus knowledge of the LGF is extended to all contiguous 
sites and, by extension through consecutive 2-cubes, all over the lattice. 
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This procedure, however, is not useful because the system of (2.7) and (2.1) taken 
all over the lattice actually admits 2D independent solutions ((2.1) alone admits an  
infinite number if D >  11, at least one of which grows exponentially in any given 
direction. Even if one knew the exact LGF on the original 2-cube, machine rounding 
would introduce small amounts of 'bad' solution which would grow rapidly (roughly 
times 4 0 - 2  at each step) and  accuracy would soon be lost [4]. 

2.3. Error-free extension from a tube 

A much better result is obtained from the following observation. Let a 'tube' signify 
an  infinite one-dimensional series of consecutive 2-cubes. The tube has cross section 
2D-1  sites per unit length and may accordingly be resolved into 2D-' parallel infinite 
straight lines. Now if the L G F  are given on a whole tube, they can be extended to the 
whole space by the gradient equations alone. Moreover, if the tube passes through 
the origin, this can be done without any magnification of machine error. 

Let us explain this first in two dimensions. Let any point be labelled by the 
coordinates ( n ,  m )  and let the tube consist of the two parallel lines m = O  and m = 1. 
For any n, m,,  the gradient equation at ( n ,  m,) gives 

V,(n,  m a +  l ) - V , ( n ,  m , -  1 )  = ( m , / n ) [ V , ( n  + 1 ,  mo)-V,(n - 1 ,  m,)] (2.8) 

so that V, can be determined on the line m = mu+ 1 if  it is known for m = ma- 1 and 
m = m,.  (For n = 0, (2.8) is indeterminate, but that does not matter as V,(O, m + 1) = 
V,( m + 1 , O )  is already known.) Thus, from the lines m = 0 and m = 1 ,  we generate 
m = 2, rn = 3, and so forth. Because of the symmetry V,( n, m )  = V,( m, n ) ,  it suffices to 
use (2.8) only to generate the half-quadrant n > m > 0. 

Now suppose there is a rounding error € ( n o ,  ma) in the determination of q ( n o ,  ma). 
This error will propagate to other sites ( n ,  m )  for which In - n o /  s m - m,. The total 
error at site ( n ,  m )  will be Cnumc, & ( n o ,  mo)Gf&mij, where G is determined by the gradient 
equation 

(2.10) 

(2.11) 

where 

g XF = jOm Jn ( U ) ~ h (  U ) [ J m  ( U ) N m , , -  1 ( U ) - N m  ( U ) ~ r n " -  1 ( U 11 d U* (2.12) 

(The divergence at small U for m > n + no+ mo is related to the indeterminacy of (2.9) 
for n = 0. It does not concern us since we use (2.8) only to generate V, for m s n. The 
symmetry g?"O = girg can also be derived directly from a hopping expansion.) 

We have evaluated G numerically by direct use of (2.9) and (2.10) and find JG/  S 1 
in all cases examined, as long as m s n. This is plausibly consistent with (2.12) for 
points close to the origin. For points far from the origin, a saddle-point treatment of 
(2.12) shows that gt>$'/a diminishes as K3'* for large A. If the rounding introduces 
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an uncorrelated mean square error ( E ' )  at each site, the total mean square error at 
( n ,  m )  = ( A V ,  A p )  will be 

A:,,, - ( E ' )  

V + ( P i L " )  

A dvo(Avog ' :>~~o)2  (2.13) 

which grows linearly as A. Thus even at lo4 sites away from the origin, A,, is only 
two decimals greater than machine error. 

The extension to higher dimensions is easy because each equation of (2.7) involves 
only four coplanar sites. Therefore, within each plane, the recursion (2.8) will generate 
the whole plane if two adjacent lines are given, one passing though the origin. 
Consequently, the whole D space is generated if two adjacent ( D  - 1) spaces are given, 
one passing through the origin. This is done by dividing D space into planes perpen- 
dicular to the ( D  - 1)  spaces. By induction on D, it follows that all D space can be 
generated from a tube. (The process is made quite clear by considering D = 3.) Since 
a whole plane is generated at each step, the error propagation is governed by exactly 
the same equations (2.9) and (2.10), and the total error remains small as in two 
dimensions. We have naturally checked that the numerical results we have obtained 
are in agreement with this analysis. 

Since the gradient equation does not involve M ,  the foregoing analysis holds equally 
whether the mass is large, small or zero. However, to find v' on the tube, one needs 
a variety of methods for these different cases. 

5 U-(,-,") (G>,"")'- ( E ' )  5; A d p O  
nnmo 

3. Tube solution for M = 0 

3.1. The cubical constraint 

In  the massless case there is a special relation that follows from the 'Laplace' and 
gradient equations taken together. We consider a pair of adjacent 2-cubes, with 2D-' 
sites in common and call one of the common sites x. This site has D - 1 neighbours 
that d o  not belong to either cube (external neighbours). Each external neighbour can 
be expressed in terms of three internal neighbours by one of the equations (2.7). Now 
we write (2.1) at x, but replace the external neighbours by their expressions in terms 
of internal neighbours and  sum the result over the 2O-I possibilities for x. We now 
have a linear homogeneous equation in the 3 x 2"-' variables belonging to the pair of 
cubes. It turns out that this equation can be written as 

(3.1) 
where C is a linear combination of v' at the corners of the cube, with coefficients 
depending on the position of the cube but not on which neighbouring cube was used 
to derive (3.1). Therefore by proceeding from cube to cube, we find that C is the same 
for all cubes. Let us call this the cubical constraint. 

The expression for C can be written in terms of the position vector f of the centre 
of the cube 

C (cube 1)  = C (cube 2) 

C =  c ( 4 c f , ( x , - f p ) + D - 2  
.v ai corners p 

(3.2) 

In this form C may be recognised as the lattice analogue of the continuum quantity 

(3.3) C, = 2 ( r - V + D - 2 ) q c (  r ) 
which of course is also constant, when M = 0. 
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Since C and C, become the same far from the origin, they must be the same 

c=o for D > 2  (3.4) 
everywhere. This gives 

which will play an important role in our sifting procedure. 

obtain 
2(n + m + 1)[$(n+ 1 ,  m + 1 )  - Y ( n ,  m ) ] + 2 ( n  - m ) [ Y ( n  + 1 ,  m )  - - q ( n ,  m + 111 

In two dimensions, C simplifies, but the asymptotic value is no longer zero. We 

= -4121~ (3 .5 )  
and in particular far n = m 

1 Y( n f 1 ,  n + 1 )  - Y( n, n )  = - (3.6) 

Now in two dimensions the LGF become infinite in the limit M + 0, but their 

( 2 n  + 1)x' 

differences remain finite. To study the differences, we may as well set 
Y(0 ,O)  = 0. (3 .7 )  

Y(1,O) =Y(O, 1 )  = -4 (3 .8)  

Y(1, 1 )  = -117r. (3 .9)  

Then 

because of (2.1), and from (3.6) 

Since V is now determined on the four corners of a square, it can be extended to the 
whole plane by using (2.1) and (2 .7);  one obtains 

Y ( n , m ) = x - ' p ( n , m ) - q ( n , m )  (3.10) 

where the rational numbers p ,  q are given explicitly by recursion. (Thus Y ( 2 , O )  = 
2 / x -  1.) 

Unfortunately, this method is ineffective as explained in 0 2.3: p and q become 
large away from the diagonal, and accuracy is lost in the subtraction. Hence we make 
no use of (3 .5)  except as an afterthought, to check our calculation of Y(1, I ) .  

3.2. Sijting procedure for D = 2 

Let us take the case of two dimensions for simplicity. For n = 1 , 2 , .  . . , let 

fn = w n ,  0) g, = \Ir ( n, 1 ) = U'( n, - 1 ). (3.11) 
Then f n + ,  is given by (2.1) in terms of f n - , ,  f ,  and g,. The single gradient equation 
does not yield any relation at (n ,  0). However, at (n, l ) ,  it can be combined with the 
Laplace equation to eliminate Y(n,  2); this gives an expression for g,,, . The results are 

fn+,=4fn - f n - I  -2gn (3.12) 
( n + l ) g , + ,  =4ngn-(n-1)g,- ,-2nf, .  (3 .13)  

These equations involve only the LGF in the tube; hence the problem is now one 
dimensional. 

Suppose one iterates the 4 x 4 system. At large n, the iteration is approximately 

(3.14) 
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Diagonalising this matrix gives four eigenvalues: 1, 1, Aa and Ai' where A a  = 3 + J 8 =  
5.8. Therefore if the initial conditions are not right, the solution will blow up as A:. 
The eigenvalues 1 are associated with the true solution (growing logarithmically) and  
the constant solution. The constant has been fixed by (3.7); in fact, we might as well 
express (3.12) and (3.13) in terms of differences f n  - f n t l ,  f n  - g n ,  so that the transfer 
matrix is only 3 x 3  and has eigenvalues 1, A,, Ai'. 

The initial conditions involve f o ,  go, f ,  and g , .  The first three are determined by 
(3.7) and (3.8). But g, is unknown since we are not using (3.9). Instead it will be 
determined by requiring that the solution not blow up as A :. 

If there were no rounding error we might proceed as follows. Generate a solution 
of (3.12) and  (3.13) (call i t  T') by starting with g, = 1, f o=go=  f ,  = O .  Of course \Ya 
will blow up  as A :. Cut the process off at some convenient value n = n ,  . Then generate 
a solution q"' by imposing (3.7), (3.8) and g\"'= 0. This will also blow up. By setting 
aI  =f(n9 ' / f z , ,  and starting with g:"= -aI instead of 0, one generates an improved 
solution 

(3.15) 

which is guaranteed to have f:',' = 0 and therefore cannot be very different from the 
true V. Since the true f n  is not quite zero, q"' will also blow up  as A:-"' when 
continued beyond n , .  When we reach some value n , ,  we set a z  = f L','/f"n2 and g'j" = 
gill- a* ,  obtaining a solution 

(3.16) 

that behaves well out to n 2 ,  and so on. 
In the presence of a rounding error, the first correction will work if we take n ,  so 

that Y " ( n , , O )  is near the inverse of the machine error. However, at the second 
correction the value of a2 will be as small as the machine error; hence g, will not be 
corrected accurately, and VI2' will still blow up at n - n 2 .  Subsequent corrections will 
not change g1 at all. 

We therefore modify the procedure. Having calculated cy, at n , ,  we use (3.16) 
directly to compute V(2' for n S n , .  This gives good values at n - n ,  which can be 
used in (3.12) and (3.13) to start the recursion. The resulting behaves well up  to 
n , .  When it blows up at n 3 ,  we repeat the process, obtaining 9(3' by direct subtraction 
for n S n ,  and by recursion from n2 onward. We have found that the resulting solution 
is accurate nearly to machine error even hundreds of sites from the origin. 

If we were to use (3.8) at the beginning, it would only make the starting solution 
as good as @ I ) ;  the subsequent corrections would still be necessary. We did not d o  
so because we wished to see whether our recursion would calculate 7~ all by itself. 
Indeed we obtained 

(3.17) 
agreeing with the tabulated value of 7~ until the bracketed decimals. The discrepancy 
is less than one unit of machine error. 

7 ~ = 4  lim ( M : ~ ~ ) + M : ; ' ) / ( M : ? ' + M : ? ' )  

qr(l! = qr(O! - a,qr'" 

q I 2 l  = *I! ! -  a 2 q a  

- l /gl  =3.141 592 653 589 793 2(27) 

The calculation of 7~ can be reduced to the algorithm 

fl-x 

(3.18) 
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The first three approximations are ?=3.20, %=3.147, #=3.1421. The error 
diminishes by about 3 + v% at each step. 

3.3. Sqting for D>2 

Consider D = 3 .  The tube consists of four sites for each n, but only three are independent 
because 9( n, 1 , O )  = 9( n, 0 , l ) .  The recursion is 

f n + l = 6 f n  -fn-1-4gn 
( n  + l ) g n + I = 6 n g n - ( n - l ) g n - 1 - 2 n ( f n + h n )  (3.19) 

( n  + 2)h,+, = 6nh, - ( n  - 2)h,-, - 4ng, 

where fn = 9 ( n ,  0, 0), g, = 9 ( n ,  1 ,  0), h, = 9 ( n ,  1 ,  1 ) .  The eigenvalues at large n are 
1 ,  1 ,  A,, A;', A b ,  A b '  where A, = 5+J24 ,  A h  = 3+J8. The unit eigenvalues select the 
true LGF (-n-') and the constant. 

The initial conditions are determined by the eight corners of a starting cube at the 
origin, but by symmetry these yield only four independent quantities: fo ,  go =f,, ho = g, 
and h ,  . By Laplace's equation at the origin 

go=fo- i .  (3.20) 

Unlike those for D = 2 ,  the LGF here are finite, and we do  not wish to set f o = O .  
Instead, the additive constant must be determined so that 9 + 0 at large n. By means 
of the cubical constraint this condition can be introduced exactly via the starting cube, 
where (3.2) and (3.4) give 

fo=3g ,+2h l .  (3.21) 

In view of (3.20) and (3.21), there remain only two unknown parameters g, and 
h , .  These will be fixed by requiring the solution to be free of both the A, and the Ah 
mode. 

To avoid inaccurate subtractions, the sifting can be done as follows. First generate 
9, as in § 3.2. Then generate a different solution 9' (also homogeneous at the origin) 
with successive corrections to eliminate the A, mode. The final 9' grows only as A:. 
Now we are ready to generate the true solution. Suppose we have a solution 9"" with 
(3.19) which behaves well until n = n, and blows up  as A:-"/ after that. At the next 
cutoff point nl+, , we evaluate c y I + ,  and make a correction from 9" as in 4 3.2 so that 
the new solution 9"" has f,,,, very small. However g,,+, and h,,+, will be comparable 
to their values in Yh. The three solutions qO, qh, 9'"" now have quite different ratios 
gn,+,/fn,,,. Therefore we can accurately find a new cyl i l  and  a p l + ,  so that 

(3.22) 

since the determinants used to solve (3.22) involve no large cancellations. The new 
solution 9('+') is now given by 

y(I+~'=qr(I)'-cy/+lqP (3.23) 
for n < n,, and by (3.19) thereafter. 

For D > 3 the analogous procedure goes through smoothly. There are 2 D eigen- 
values, of which D - 1 are > 1. The starting cube has 2D corners but only D + 1 are 
independent by symmetry. Imposing the cubical constraint and the Laplace equation 
at the origin fixes two of these. The remaining D - 1 parameters are determined by 
sifting out the D - 1 growing modes. 
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4. The tube solution for M # 0 and numerical results 

When the mass is not zero, the quantity C of (3.2) is not constant. This is not surprising 
since (3.3) is not constant either. Therefore, there is no cubical constraint and we have 
D unknown parameters instead of only D - 1. At the same time, the eigenvalues 1 of 
the asymptotic transfer matrix become erM, so that there are now D instead of D - 1 
growing modes. (The extra one was, for M =0,  the constant solution, which was 
eliminated by the cubical constraint, or for D = 2, by setting q ( 0 , O )  = 0.) Thus the 
sifting method is again applicable; one must simply sift out an additional growing 
mode. Actually, if one sifts from outside towards the origin, one has again only D - 1 
bad modes. We have found that an  extra bad mode affects the relative accuracy very 
little, which remains near machine error. There are mainly two complications in the 
quasimassless case, The mode of interest decaying exponentially, there is sometimes 
a loss of accuracy when one does subtractions since the result is much smaller than 
the value started with. This problem is cured by restarting the iteration far enough 
back where the subtraction has not affected the Green function too much. The second 
problem is that for small mass, one must take the lattice sufficiently large (>>l /M) ,  so 
that the e+M mode can be separated from the eCM one. Thus the sifting method does 
become more time consuming as M + 0. However, there is no critical slowdown, in 
contrast to relaxational methods for solving the tube solution, e.g. successively over- 
relaxed iteration. 

The actual speed of the tube part of the program in three dimensions was about 
loops per site in the tube for the first mode to be sifted, and slightly more than n 
times that for the nth mode. The two-dimensional program was a bit faster. However, 
the overall speed of the programs was dominated by the extension to space since there 
are far more sites, and this took 50 ps per site on a VAX 780 in double precision 
arithmetic. 

The accuracy of our method is excellent. Let us first consider the case of two 
dimensions. We have already illustrated how small the error is by computing 7r to 
seventeen digits using real *8 arithmetic on a VAX. It is most natural to ask how the 
accuracy of the Green functions depends on the mass and the distance from the origin. 
We have thus converted the programs to real *16 to be able to determine the errors 
given by the real *8 arithmetic. In practice, we find that the on-axis values have an  
error in the seventeenth digit near the origin, and that this error grows as one goes 
further away, but very slowly. Typically two digits are lost by the time one is 100 sites 
away from the origin, whatever the mass is. This shows that the method is extremely 
reliable. These features are illustrated by some examples in  table 1. In three dimensions, 
the situation is similar. The accuracy of the tube solution near the origin is machine 
accuracy and  deteriorates very slowly with distance. The number of growing eigenvec- 
tors of the iteration (which must be sifted out) does not much affect the accuracy, so 
we believe this method can be extended to arbitrary dimension with the same high 
quality results. Again, table 1 gives some numerical results comparing our double 
precision results to ‘exact’ results from the quadruple precision programs. 

What about the extension from the tube? In § 2, our analysis showed that the use 
of the gradient equations does not magnify the error as one goes further from the tube. 
This was indeed confirmed numerically. Again this property does not depend on 
dimensionality as shown in § 2 and  in table 1. 

It is necessary to compare our method with previously existing ones. If we start 
with the integral (1.3), one has to approximate the integration by transforming it to a 
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Table 1. The Green function at various sites in two and three dimensions for two masses. 
Underlined digits show where the double precision program disagrees with the exact answer. 

Mass = 0.0 Mass = 0.1 

0.000 000 000 000 0000 
-0.250 000 000 000 0000 
-0.3 18 309 886 183 7907 
-0.363 380 227 632 4187 
-0.386 619 772 367 5813 
-0.512 902 329 078 9229 
-0.623 675 571 215 7085 
-0.679 036 325 006 0300 
-0.734 095 688 013 8674 
-0.789 304 497 364 1300 
-0.879 955 915 479 8970 
-0.935 122 777 651 6508 

0.252 731 009 858 6630 
8.606 434 319 199 6337 x lo-’ 
5.519 143 368 773 7317x lo-’ 
4.357 835 439 772 5526 x lo-’ 
4.288 93 1 454 236 5747 x IO-‘ 
1.610 107 533 393 9829 x IO-’ 
7.978 261 541 929 4058 x lo-‘  
5.625 268 083 901 7879 x IO- ’  
4.591 851 010273 0959x lo-‘ 
3.981 378 573 047 7163 x lo-’ 
2.813 270223 465 5 4 6 6 ~  lo-’ 
2.296 884 543 905 7603 x I O - ’  
1.591 708 769 407 9974x I O - ‘  

0.641 559 978 667 7016 
0.393 163 878 614 3709 
0.326 062 134 078 6916 
0.282 902 906 418 5426 
0.260 590 700 213 4057 
0.147 556 310 490 9589 
6.707 471 046 828 0 9 s  x 
3.798 274 904 899 9015 x lo-’ 
1.813 960 744 162 1715 x 
6.737 951 950 499 6523 x lo-’ 
5.884 157957 517 5710X 
6.264 938 664 782 4272x I O - <  

0.244 661 638 355 1214 
7.840 274 108 571 3 3 1 4 ~  lo-’ 
4.772 745 412 853 1611 x lo-’ 
3.624 690 936 758 6074 x IO-’ 
3.562 901 905 588 9131 x IO-’ 
9.825 868 803 661 5 1 E x  lo-’ 
2.943 911 427 371 9 7 4 8 ~  IO-’ 
1.365 720 776 473 26@x 
8.104563 230 1 6 4 6 0 4 3 ~  IO-‘ 
5.399 530 381 165 7203x IO-‘ 
1.661 349 241 2 4 6 0 9 0 3 ~  
7.177 536645 238 7367x IO-’ 
1 075 258 905 457 8 9 2 x  

sum, Since the integral is periodic, the error induced by the discretisation is of order 
eCN for N steps in each direction of k. There will also be a rounding error due to the 
machine, which goes as N”” times machine accuracy. This is negligible in practice. 
Suppose one wants the Green function at a single lattice site: to obtain, say, lo-’” 
accuracy, one needs N - 20, leading to (20)O operations. Thus for D = 3 this single 
site might require as much time for lo-’” accuracy as our method would take to generate 
an array of - 1000 inequivalent sites (all those with 1x1 + / y l+ IzI s 33) to accuracy. 

To improve the direct method, one can convert the D-dimensional integral to a 
one-dimensional one over products of Bessel functions: 

$(x) = D  exp[- (2D+M2)A]  n 1 , , ( 2 A )  dh. (4.1) (2.rr) r 0 , 
The standerd algorithm for calculating Bessel functions consists of doing a recursion 
[5] relating 1, , (2A) to Z n - , ( 2 A ) .  The whole lattice can thus be generated rather efficiently, 
but at each site, a one-dimensional integral must be done. Again a discretisation has 
to be made, with errors going as N-” with p an integer depending on the discretisation 
method. In practice, i t  is not possible to keep N small while taking p large, so one 
often settles for p = 4. In this case, for an  accuracy of lo-’”, N is of the order of 300. 
Each of the N steps at a site requires D multiplications and an  addition, assuming 
the Bessel functions were tabulated in advance. However, our method (in the 
‘extension’ stage) needs only one step for each site, consisting of three additions, a 
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multiplication and a division. Thus the Bessel function method is still not competitive, 
except possibly as an alternative to our sifting method for the initial tube solution. 
Even there, OUT method is more accurate and usually faster, especially for small or 
zero mass where the Bessel function integral converges slowly. 

Another method which is often used to generate the Green function on the whole 
lattice is fast Fourier transform. This is done for a finite lattice of size L with periodic 
boundary conditions and requires 2DLD In L operations in D dimensions. L must be 
taken much larger than 1 / M  to minimise finite-size effects. This is the most severe 
problem with this method; it is just not well suited to the infinite lattice. Since one 
cannot take advantage of the symmetry of the lattice as in our method, the FFT is of 
the order of D ! 2 D D  In L slower than our method, even neglecting the problem of 
accuracy. But to reduce finite-size effects to relative 0(1/N) in FFT, one must slow it 
down (by increasing the volume) by another factor N 2  if D = 2 or 4, or N 3  if D = 3. 
Thus FIT is not competitive except for crude accuracy. The other side of the coin is 
that, if it is the finite volume Green functions that are of interest, our method is not 
easily applicable and the FIT is a very natural and good way to proceed. 

When the mass becomes very small, all of these methods become time consuming. 
If one needs the Green function at a fixed distance as M + 0, it seems advantageous 
to determine the series expansion in powers of the mass. We do this in the next section 
and find it to be both fast and accurate. 

5. Analytic expansion in M 2  

5.1. General considerations 

Considered as analytic functions of M’,  the continuum and lattice Green functions 
have the same type of singularity at M’ = 0, since this is governed by small momentum. 
Letting x be a position vector in D dimensions, the LGF are given by 

Y ( x ,  M 2 ) =  F ( x ,  M 2 ) S ( M ’ ) + H ( x ,  M 2 )  (5.1) 
where F, H are analytic in M’ and 

Writing 

1 
M 

S (  M 2 )  = M D - 2  In 7 D even 

F = c A , ( x ) M 2 ’  
I 

H = c B / ( X ) M ~ ‘  
I 

our problem is to determine the A 
We first observe that, since the 

D odd. 

(5.3) 

and B. 
gradient equations do  not contain M ,  each set of 

A or B must satisfy them separately, i.e. [ A , ( x + p ) - A l ( x - p ) ] / x ,  and [ B l ( x + p ) -  
B , ( x - p ) ] / x f i  must both be independent of p for each 1. Therefore it suffices to find 
the A and B on a tube and extend to D space by the method of 5 2. 

Next, we differentiate (2.6) with respect to M’, obtaining 
d 

dM2 
--@(x) = 9 ( x )  (5.4) 
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which can be substituted into (2.5) to give 

(/+!io- 1)(A/(x + P )  -A, (x-P))  x,(x)A/-i(x) ( 5 . 5 )  

B/(x + P ) - Bi(x - P )) = x,B/- 1 (x)  D odd 
(5.6) 

D even. ) = -A/-D/2(x)+Ef-1(x) ( i  
These can be used by recursion on 1 to find the A and B everywhere on the tube if 
they are known on a starting cube at the origin. To obtain values on the starting cube, 
we use different methods for the A and B. 

5.2. Direct calculation of the A coeficients 

When 9 is expressed as an integral as in (1.3) and M2 is allowed to vary over the 
complex plane, there is a branch cut on the negative real line from 0 to - 2 0  as that 
is where the pole of f (  k )  crosses the domain of integration over k. The discontinuity 
across the cut is, by (5.1) and (5.2), 

9 ( - s 2  - is) - 9 ( - s 2 +  is) = 2 . r r i ( i~ )” -~F( - s~ )  D even 
(5.7) 

= -2( i~)”-~F(-s ’ )  D odd 
where s is real and positive and the argument x has been suppressed for brevity. 

The left-hand side of (5.7) can be evaluated using 
1 1 

z - i s  z + i s  - 27riS(z) ( 5 . 8 )  

which leads to 

*( -s2  - is) - 9 ( - s 2 +  is) 

) (5.9) 
1 

= 2 7 r i 7  [ n dk, exp ( i  k,x,) 6( (2 - 2 cos k, ) - s2 
(2T) 

so that (writing fi for F if D is even and for -F/i7r if D is odd) 

(2.rr)”(is)”-’F.(-s2)= 

where s, = 2 sin tk,, the average is over a unit vector n and 

L( a, x)  = (1 + (1 + d ) ” 2  + a ] 2 X  

(2x+21-1)!! =f ,=0(2x-21-1)!! a2‘/(21) ! 

plus terms odd in v. 
Letting 

(5.10) 

(5.11) 

(2x+21-1)!! ‘ =U [4x2 - (2j  - 1)2] 
= (2x-21- l)!! 1 

(5.12) 
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we have 
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so that (5.10) yields 

where 

/ ( 4 ~ ) ~ / ~ ( 4 D -  l ) !  D even 

D odd. 

(D-1)/2 = (-1) 

= a( -1/ T)"')''/( D - 2)!! 

(5.13) 

(5.14) 

(5.15) 

From (5.14) the A/ can be obtained directly for any site, but the summation may 
be relatively time consuming. The method best combining speed and accuracy is to 
use (5.14) throughout the tube (bypassing (5.5) which tends to accumulate error) and 
extend to the rest of space as in 0 2.3. 

5.3. Starting values for E coeficients 

If we use (5.6) to eliminate E(2,0, .  . . ,O), E(2,1,0, .  . . ,O), . . . , E(2 ,1 , .  . . , l) ,  then 
the Laplace equation (2.1) yields D + 1 equations for the ( D  + 1) independent unknowns 

(5.16) P l ( n )  = EI(O, . . . ,O, 1 , .  . . , 1). 
D-n n 

These equations can be written 

2( D - n)&( n + 1) + 2nPI( n - 1) - 2DPl( n )  

= (1 - n/l )P/- , (n)  D odd (5.17) 

with an extra term related to A / -  D / 2  on the RHS when D is even. 
because all ( D  + 1) 

equations are unaffected by adding a common term API (independent of n )  to all the 
PI. Thus we need one more equation. 

The other side of the coin is that, if (5.17) is multiplied by (:)=D!/n!(D-n)! 
and summed over n, the PI cancel out and we have a new equation relating the P I - ' .  
Replacing I - 1 by 1, the new equation is 

Unfortunately (5.17) does not determine the PI from the 

D odd 

(5.18) 

where the a/ are derived from the AI by an equation like (5.16). 
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From (5.18), the ambiguous common term AD, can be determined except in one 
case: when D is even and I = D / 2  - 1. In that case, the coefficients on the LHS of 
(5.18) add up to zero, so that (5.18) is also unaffected by the addition of Ap,. 

In this 'intractable' case, we may note that, if the LHS of (5.17) is multiplied by 
n ( 3 / 4  and summed over n, the result is the LHS of (5.18). Hence, the p D l z - l  may be 
eliminated, giving an extra constraint on the pD/2-2.  For D = 4 the extra constraint 
reduces to 

'P(0,0,0,0)-2'€'(1, l ,O,O)+'P(l ,  1, 1, 1)=5/ . r r2  (5.19) 

when M = 0. This is a check on the numerical calculation of 0 3.3. However, it brings 
us no nearer to fixing the additive term for pD,2-1. 

5.4. The 'intractable' constant for even D 

The preceding sections show how to find all the A, and B, by a combination of analytic 
and numerical methods, except (when D is even) for a single constant. Determining 
this constant is equivalent to finding the coefficient of MD-' in '€'(O). We have not 
found any way to do this by difference equations and so we fall back on the Bessel 
function representation. 

Writing (1.2) as 

f ( k ) =  ~ m e x p ( - h M 2 ) ~ e x p [ - 2 h ( l - c o s  P k,)]dh (5.20) 

we obtain from (1.3) for x = 0 

'P(0, M z )  = loE exp[-(2D+ M2)h]Io(2h)D dh. (5.21) 

Matching this to (5.1) and differentiating D / 2  - 1 times with respect to M 2 ,  we obtain 

(-1)-""-' exp[-(2D+ M2)h]Io(2h)DhD/2- '  dA 

(5.22) 

If M2<< 1 we may split the integral into A < 1 / M  and A > 1/M, so that it becomes 
(omitting small terms) 

(5.23) 

and the second term (replacing A + h / M 2 )  is 

( 5.24) 
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Combining terms and making further negligible adjustments, (5.23) becomes 

(5.25) 

where 

(5.26) 
dA 

A 
[(J4.nh e-2AZo(2A))D-l+e-A]--. 

Matching the ln(l/M’) term to (5.22), we obtain 

AO(0) = (-1)D/2-’/(4.x)D/’(4D- l ) !  

in agreement with (5.15). The constant term gives 

(5.27) 

which is the desired formula. The integral (5.26) must be calculated numerically. 

directly from (1.3). Integrating over k2 we have 
For D = 2 (5.28) gives Bo(0) = P(2)/4.n. In this case an analytic result can be found 

2 T  

q ( 0 ,  M’)=L[ dk1[(2+M2-2cos k l ) ( 6 + M 2 - 2 c o s  k1)]-’/’ 
2.n 0 

Setting cos k ,  = 1 +aM’( 1 - z )  this becomes 

dz 
{ ( z 2 - l ) [ ( l +  M2/8--(M2z/8)’]}”’ 

8M-’+1 

“(0, M 2 )  =- 
4.n I 1 I 

dz 
(z’- 1)‘/’[1 - (M’Z/~)’]‘”  

dz 8 / M 2  dz 
==-!-[I 4.n =+[I/,+, z ( [ ~ - ( M ’ / ~ ) z ] ~ ) ’ / ’  

=-{cosh-’ 1 - + l n [ f i / M  1 + ( 8 / M 2 -  l)”’]} 
4.x M 

so that 

1 
4.x 

Bo(0) = - In 32. 

(5.29) 

(5.30) 

(5.31) 

5.5. Results 

The determination of the A, requires summing I D - ’  terms (neglecting symmetry) and 
this is time consuming if I and d are large. We have thus limited the use of (5.14) to 
the tube. Then the calculation is again dominated by the extension to space, so that 
at  each order in I, the amount of CPU time used is again 50 FCLS per site. We give in 
table 2 the first few terms in this small mass expansion for d = 2 and 3. The coefficients 
grow as one goes further from the origin, but the series is convergent everywhere 
nevertheless. By comparing the exact values with the series, we have checked that the 
series converges to the right answer, so that one rapidly (in I) obtains machine accuracy. 
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Table 2. Coefficients of the mass expansion of the Green function in two and three 
dimensions. The first- and second-order terms are given and the underlined digits show 
where the double precision program disagrees with the exact answer. 

Site / =  1 / = 2  

I -s 
I a 
3 
8 

2 4 + i  
49+; 
99+; 

199+$ 

-0.024 527 128 580 608 353 
0.044 421 496 467 095 270 
0.073 581 385 741 825 059 

-4.674 772 966 616 816 
-12.143 991 674 120 86 
-29.857 361 996 679 28 
-70.796 874 882 694 12 

9.947 183 943 243 4583 X 

-3.315 727 981 081 1528 X 

- 1.657 863 990 540 5764 x lo-’ 
-2.984 155 182 973 0375 X lo-’ 
-4.310 446 375 405 4987 x lo-’ 
-0.321 625 614 164 8718 
-1.316344008489218 

-1.21641585830226+~ lo-’ 
2.995 767 639 342 1190 x lo-’ 
5.101 859 388 164 3107 x lo-’ 
6.554 471 201 421 8282 x lo-* 
7.390 018 460 897 3692 x lo-’ 
0.196 891 774 579 3256 
0.396 886 132 191 7714 

0.019 531 250 000 
-0.011 718750000 
-0.011 718750OOO 

151.582 031 250000 
615.644 531 250 000 

2481.269 531 250000 
9962.519 531 250 000 

0.0032106648442673390 
-0.002 921 117 300 884 7492 

0.000 809 076 677 83 1 547 68 
-16.052 591 905 483 16 

-100.291 439 009 499 1 
-542.824 843 834 596 5 
-2733.504 997 870 967 

-1.367 737 792 195 9755 X 

2.901 261 983 446 0087 x 
6.216 989 964 527 1616 X 

-3.730 193 978 716 2969 X 

-2.694 028 984 628 4367 x lo-’ 
-0.357 808 495 758 4199 
-6.400 722 741 278 821 

8.377 624 060 630 5671 x 
-1.189 597 357 7 7 4 0 5 0 6 ~  lo-’ 

1.541 432 309 485 0445 x lo-’ 
7.003 491 644 003 2347 x lo-’ 
1.581 660 060 277 3652 x lo-‘ 
0.385 781 737 478 5738 
3.257 859 903 616 002 

6. Conclusions 

We have presented a very fast and accurate method for obtaining Green functions on 
an infinite lattice. The CPU requirements on a VAX 780 are 50 ps per site and the 
accuracy is essentially that of the machine. This numerical method can be used both 
for the massless and massive case. The numerical values of the Green function can 
be used in a real space evaluation of lattice graphs, e.g. for calculating the conductivity 
in the presence of weak disorder or Wilson loops at weak coupling. In addition, we 
have derived the small mass expansion of the Green function and have found it to be 
particularly useful near the origin. 
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